AI智能摘要
你是否在为JetsonOrin平台编译PyTorch后,苦于找不到官方的TorchVision预编译包?这份详尽的指南,将带你一步步从源码成功构建出适配的whl安装文件。从环境变量设置、依赖库安装到最终测试验证,我们为你揭示了官方未提及的ARM架构编译关键步骤。跟随指南,你将彻底摆脱依赖困境,在边缘设备上自主部署完整的PyTorch视觉生态。
— AI 生成的文章内容摘要
基础信息
TorchVision 与 Torch 版本对照表
torch | torchvision | Python |
|---|---|---|
main / nightly | main / nightly | >=3.10, <=3.14 |
2.9 | 0.24 | >=3.10, <=3.14 |
2.8 | 0.23 | >=3.9, <=3.13 |
2.7 | 0.22 | >=3.9, <=3.13 |
2.6 | 0.21 | >=3.9, <=3.12 |
PyTorch 编译教程请参考
构建步骤
拉取项目代码
git clone --recursive --branch v0.22.0 https://github.com/pytorch/vision torchvision
cd torchvision
sudo apt-get update && sudo apt-get install -y libjpeg-dev libpng-dev libwebp-dev libavcodec-dev libavformat-dev libswscale-dev ffmpeg
使用编译 PyTorch 的虚拟环境
source ../pytorch/.venv/bin/activate
uv pip install numpy pillow
构建
export CPATH="/usr/include/aarch64-linux-gnu:/usr/local/cuda/include:$CPATH"
export LIBRARY_PATH="/usr/lib/aarch64-linux-gnu:/usr/local/cuda/lib64:$LIBRARY_PATH"
export LD_LIBRARY_PATH="/usr/lib/aarch64-linux-gnu:/usr/local/cuda/lib64:$LD_LIBRARY_PATH"
export FORCE_CUDA=1
export TORCH_CUDA_ARCH_LIST="8.7"
python3 setup.py bdist_wheel
whl 输出路径
./torchvision/dist/torchvision-0.22.0+9eb57cd-cp312-cp312-linux_aarch64.whl
安装
uv pip install ./dist/torchvision-0.22.0+9eb57cd-cp312-cp312-linux_aarch64.whl
测试验证
python -c "
import torch
import torchvision
print(f'Torchvision Version: {torchvision.__version__}')
input_tensor = torch.rand(5, 4).cuda()
scores = torch.rand(5). cuda()
try:
torchvision.ops.nms(input_tensor, scores, 0.5)
print('✅ CUDA Operators: SUCCESS')
except Exception as e:
print(f'❌ CUDA Operators: FAILED, error: {e}')
from torchvision.io import image
print('✅ Basic Image IO: Functional')
"

Comments NOTHING